Giả sử 2 pt vô nghiệm. Khi đó \(p_1^2< 4q_1;p_2^2< 4q_2\Rightarrow p_1^2+p_2^2< 4\left(q_1+q_2\right)\le2p_1p_2\Leftrightarrow\left(p_1-p_2\right)^2< 0\). (vô lí)
Do đó tồn tại 1 pt có nghiệm
Giả sử 2 pt vô nghiệm. Khi đó \(p_1^2< 4q_1;p_2^2< 4q_2\Rightarrow p_1^2+p_2^2< 4\left(q_1+q_2\right)\le2p_1p_2\Leftrightarrow\left(p_1-p_2\right)^2< 0\). (vô lí)
Do đó tồn tại 1 pt có nghiệm
1.Cho pt x2-2(m+1)x + m-2=0, với x là ẩn số, m thuộc R
a, Giải pt khi m=-2
b, Giải sử pt đã cho có 2 nghiệm phân biệt x1, x2. tìm hệ thức liên hệ giữa x1 và x2 mà ko phụ thuộc vào m
2. cho pt: x2-2(m-3)x-1=0
Tìm m để pt có nghiệm x1, x2 mà biểu thức a=x21 - x1x2 + x22 đạt giá trị nhỏ nhất? tìm gia trị nhỏ nhất đó
cho các pt bậc hai: ax2+bx+c=0 và px2+qx+r=0 có ít nhất một nghiệm chung. CMR ta có hệ thức : \(\left(pc-ar\right)^2=\left(pb-aq\right)\left(cq-rb\right)\)
Cho phương trình bậc 2 : x²+(m+1)x+m=0
a) Tìm m để pt có 2 nghiệm phân biệt x1,x2 thỏa mãn 2x1+3x2=1
b) Khi pt có 2 nghiệm phân biệt x1,x2 lập hệ thức liên hệ giữa nghiệm độc lập với m
Viết các phương trình bậc hai dạng x^2+px+q=0. Biết rằng, phương trình có 2 nghiệm nguyên , các hệ số p,q đều là những số nguyên và p+q+1=2003
Chứng minh rằng nếu hai pt x^2+p1x+q1=0 và x^2+p2x+q2=0 có nghiệm chung thì (q1-q2)^2+(p2-p1)(q2p1-q1p2)=0.
cho hệ phương trình \(\hept{\begin{cases}nx-y=4\\x+y=1\end{cases}}\)
a, với giá trị nào của n thì hệ phương trình có duy nhất một nghiệm
b, với giá trị nào của n thì hệ phương trình vô nghiệm
1, Chứng minh pt: x2 + mx + m -1=0 luôn có nghiệm với mọi giá trị của m
b, Giả xử x1,x2 là 2 nghiệm của pt đã cho, tìm giá trị nhỏ nhất của biểu thức B= x21 + x21 -4(x1+x2)
2, cho pt bậc hai x2 +5x + 3 = 0 có 2 nghiệm x1,x2. Hãy lập một pt bậc hai có 2 nghiệm (x21 + 1) và (x22 + 1)
Giúp mình với
Cho pt x^2-(2m+3)x+4m+2=0
a)chứng minh pt trên có nghiệm với mọi m
b)tìm GTLN của A=x1x2-x1^2-x2^2
c)tìm m để pt có nghiệm thỏa mãn 2x1-3x2=5
Cho đa thức bậc ba \(f\left(x\right)\) với hệ số của x3 là một số nguyên dương và biết \(f\left(5\right)-f\left(3\right)=2017\) .Chứng minh rằng \(f\left(7\right)-f\left(1\right)\) là hợp số