Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kim So Hyun

Chứng minh rằng nếu a,b,c là độ dài 3 cạnh tam giác ABC thỏa mãn :a2+b2+c2=ab+bc+cathì tam giác ABC cân 

vũ tiền châu
3 tháng 9 2017 lúc 20:29

ta có \(\left(a-b\right)^2>=0\) => \(a^2+b^2>=2ab\)

tương tự ta có \(b^2+c^2>=2bc\)

                        \(c^2+a^2>=2ac\)

cộng từng vế của 3 BĐt cùng chiều ta có \(2\left(a^2+b^2+c^2\right)>=2\left(ab+bc+ca\right)\)

                                                                    => \(a^2+b^2+c^2>=ab+bc+ca\)

dấu = xảy ra <=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

<=> a=b=c

<=> tam giác ABC là tam giác đều(ĐPCM)

Ben 10
3 tháng 9 2017 lúc 20:24

Từ giả thiết suy ra 
(a-b)^2+(b-c)^2+(a-c)^2=0 (nhân bung cái này sẽ ra cái giả thiết ban đầu). 
Từ đó suy ra: a=b, b=c và c=a. (Do tổng của 3 bình phương mà lại bằng 0 tức là các bình phương đó đều phải bằng 0). Suy ra tam giác đó đều 
Cách của bạn phía trên sai. Bạn đang chứng minh chiều nghịch của bài toán


Các câu hỏi tương tự
Cao Thanh Nga
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Doãn Thị Thu Trang
Xem chi tiết
nguyễn văn nhật nam
Xem chi tiết
khanhvan nguyen
Xem chi tiết
Anh Bùi Thị
Xem chi tiết
Bùi Nhật Vy
Xem chi tiết
huongkarry
Xem chi tiết