từ a+b/b+c=c+d/d+a=>ad+a^2+bd+ab=bc+bd+c^2+cd
=>ad+ab+a^2-bc-cd-c^2=0
=>ad-cd+ab-bc+a^2-c^2=0
=>(a-c)d+(a-c)b+(a-c)(a+c)=0
=>(a-c)(a+b+c+d)=0
=>a-c=0 hoặc a+b+c+d=0
=>a=c hoặc a+b+c+d=0 (đpcm)
từ a+b/b+c=c+d/d+a=>ad+a^2+bd+ab=bc+bd+c^2+cd
=>ad+ab+a^2-bc-cd-c^2=0
=>ad-cd+ab-bc+a^2-c^2=0
=>(a-c)d+(a-c)b+(a-c)(a+c)=0
=>(a-c)(a+b+c+d)=0
=>a-c=0 hoặc a+b+c+d=0
=>a=c hoặc a+b+c+d=0 (đpcm)
Chứng minh rằng nếu \(\frac{a+b}{c+b}=\frac{c+d}{d+a}\)thì a=c hoặc a+b+c+d=0 ( với c,d khác 0)
( với abc # 0 và các mẫu đều khác 0)
Chứng minh rằng : nếu a+b/b+c=c+d/c+a(c+d khác 0) thì a=c hoặc a+b+c+d=0
giải hộ mik nha
mik cần gấp
Chứng minh rằng nếu a+b/b+c =c+d/d+a (c+d khác 0) thì a=c và a+b+c+d=0
chứng minh rằng: nếu a/b=c/d khác 1 thì (a+b)/(a-b)=(c+d)/(c-d) với a,b,c,d khác 0
Chứng minh rằng: Nếu a + b b + c = c + d d + a (c + d ≠ 0) thì a = c hoặc a = b + c + d = 0
chứng minh rằng nếu a+b/c+d=b+c/d+a với a+b+c+d khác 0 thì a=c
Chứng minh rằng: Nếu a+c= 2b và 2bd=c(b+d) (b+d khác 0) thì a/b=c/d
Chứng minh rằng nếu : \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\) thì a = c hoặc a + b + c + d = 0