ta có :\(\sqrt{a^2+b^2}>\sqrt[3]{a^3+b^3}\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(\sqrt{a^2+b^2}\right)>\left(\sqrt[3]{a^3+b^3}\right)^3\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(\sqrt{a^2+b^2}\right)>a^3+b^3\)
\(\Leftrightarrow\left(a^2+b^2\right)^2.\left(\sqrt{a^2+b^2}\right)^2>\left(a^3+b^3\right)^2\)
\(\Leftrightarrow\left(a^4+2a^2b^2+b^4\right)\left(a^2+b^2\right)>\)\(a^6+2a^3b^3+b^6\)
( sau đó nhân phá ngoặc và rút gọn)
\(\Leftrightarrow3a^2b^4+3a^4b^2-2a^3b^3>0\)
\(\Leftrightarrow a^2b^2.\left(3a^2+3b^2-2ab\right)>0\)
\(\Leftrightarrow a^2b^2.\left(a^2-2ab+b^2+2.\left(a^2+b^2\right)\right)>0\)
\(\Leftrightarrow a^2b^2.\left(\left(a-b\right)^2+2\left(a^2+b^2\right)\right)>0\)(luôn đúng) => đpcm