\(a\in N\Rightarrow\hept{\begin{cases}a^2+a+1\in N\\a^2+a+2\in N\end{cases}}\)
Dễ thấy a2+a+1 và a2+a+2 là 2 số tự nhiên liên tiếp, trong 2 số này có 1 số chia hết cho 2
=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)\) là số chẵn
=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)-12\) cũng là số chẵn
=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)-12\) là hợp số (đpcm)
Bài này lớp 6 mà. Không dễ thấy cái số tự nhiên tự nhiên liên tiếp đâu.