Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hà Anh

Chứng minh rằng    \(n^6+n^4-2n^2\)     chia hết cho 72 với mọi số nguyên n

Huỳnh Quang Sang
28 tháng 11 2018 lúc 9:29

Đặt  \(A=n^6+n^4-2n^2=n^2(n^4-n^2-2)\)

          \(=n^2(n^4-1+n^2-1)\)

          \(=n^2\left[(n^2-1)(n^2+1)+n^2-1\right]\)

          \(=n^2(n^2-1)(n^2+2)\)

          \(=n\cdot n(n-1)(n+1)(n^2+2)\)

           + Nếu n chẵn ta có n = 2k \((k\in N)\)

\(A=4k^2(2k-1)(2k+1)(4k^2+2)=8k^2(2k-1)(2k+1)(2k^2+1)\)

\(\Rightarrow A⋮8\)

             

+ Nếu n lẻ ta có n = 2k + 1 \((k\in N)\)

\(A=(2k+1)^2\cdot2k(2k+2)(4k^2+4k+1+2)\)

\(=4k(k+1)(2k+1)^2(4k^2+4k+3)\)

k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 

\(\Rightarrow A⋮8\)

Do đó A chia hết cho 8 với mọi \(n\in N\)

* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra \(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n \(\in N\)

Chúc bạn học tốt :>


Các câu hỏi tương tự
Thái Thị Thanh Nguyệt
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
mai sương
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Ryan Nguyễn
Xem chi tiết
Ngọc Anh
Xem chi tiết
quangcute
Xem chi tiết
Nguyễn Trần Quỳnh Châu
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết