\(n^3-13n=n^3-n-12n=n(n^2-1)-6\cdot2n=n(n-1)(n+1)-6\cdot2n\)
Ta có n(n-1)(n+1) là tích 3 số nguyênnên chia hết cho 2, 3. Mà 2 và 3 nguyên tố cùng nhau. Vậy n(n-1)(n+1) chia hết cho 2x3=6
Do đó : \(n^3-13n=n(n-1)(n+1)-6\cdot2n⋮6\)
n3 - 13n = n3 - n -12n= n(n2-1) - 6.2n= n(n-1)(n+1) - 6.2n
Ta có n(n-1)(n=1) là tích 3 số nguyên liên tiếp nên chia hết cho 2, 3. Mà 2 và 3 nguyên tố cùng nhau. Vậy n(n-1)(n+1) chia hết cho 2x3=6; Do đó n(n-1)(n=1)chia hết cho 6(1)
6.2n chia hết cho 6 vì có 1 thừa số chia hết cho 6(2)
Từ 1 và 2 => n(n-1)(n+1) - 6.2n chia hết cho 6
=>n3 - 13n chia hết cho 6 (đpcm)