A= 2005^n + 60^n - 1897^n - 168^n
cm A chia hết 4:
2005^n ≡ 1 (mod 4)
1897^n ≡ 1 (mod 4)
=> A ≡ 1 +0 - 1+0 =0 (mod 4)
=> A chia hết 4
cm A chia hết 3:
2005^n ≡ 1 (mod 3), 1897^n ≡ 1 (mod 3)
=> A ≡ 1 +0 -1 +0 =0 (mod 3)
=> A chia hết 3
cm A chia hết 167
2005^n ≡ 1 (mod 167)
1697^n ≡ 60^n (mod 167)
168^n ≡ 1 (mod 167)
=> A ≡ 1 +60^n -60^n -1 =0 (mod 167)
=> A chia hết 4,3,167 =. A chia hết 2004
n đồng dư( là dấu mà 3 dấu _) với m rồi có "(mod ...)" đằng sau thì n số dư khi m chia cho số ở trong (mod...)