gia điểm 2 đường chéo luôn thuộc trục đối xúng của hình thang cân ạ.
Bạn hạ vuông góc xuống 2 đáy là đc
gia điểm 2 đường chéo luôn thuộc trục đối xúng của hình thang cân ạ.
Bạn hạ vuông góc xuống 2 đáy là đc
Cho hình thang cân ABCD (AB > CD, AB // CD) nội tiếp trong đường tròn (O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao điểm của hai đường chéo AC và BD.
1. Chứng minh tứ giác AEDM nội tiếp được trong một đường tròn.
2. Chứng minh AB // EM.
3. Đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K. Chứng minh M là trung điểm HK.
4. Chứng minh: 2/HK=1/AB+1/CD
Cho hình thang cân ABCD (AB>CD, AB//CD) nội tiếp trong đường tròn (O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao điểm của hai đường chéo AC và BD.
a) Chứng minh tứ giác AEDO nội tiếp được trong một đường tròn.
b) chứng minh AB// EM
c) đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K. Chứng minh 2/HK= 1/AB +1/CD.
Bài 1 Cho hình thang cân ABCD (AB > CD, AB // CD) nội tiếp trong đường tròn
(O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao
điểm của hai đường chéo AC và BD.
1. Chứng minh tứ giác AEDM nội tiếp được trong một đường tròn.
2. Chứng minh AB // EM.
3. Đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K.
Chứng minh M là trung điểm HK.
4. Chứng minh \(\frac{2}{HK}=\frac{1}{AB}+\frac{1}{CD}\)
Cho tam giác ABC nhọn có hai đường cao BE, CF nội tiếp đường tròn (O) đường kính AM. Gọi H là trực tâm, K đối xứng với H qua BC. Gọi I là trung điểm của BC.
a) Chứng minh tứ giác AEHF nội tiếp được;
b) Tứ giác BHCM là hình gì?
c) Chứng minh OI = 1/2 AH ;
d) Chứng minh K thuộc đường tròn (O);
e) Chứng minh tứ giác BKMC là hình thang cân
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN của hai đường tròn (M ∈ (O), N ∈ (O’)). Gọi P là điểm đối xứng với M qua OO’, Q là điểm đối xứng với N qua OO’. Chứng minh rằng: MNQP là hình thang cân.
Giải bài :Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN với M thuộc (O) và N thuộc (O'). Gọi P là điểm đối xứng với M qua OO', Q là điểm đối xứng với N qua OO'. Chứng minh rằng: a/ MNPQ là hình thang cân.
Bài 1: Cho hình thang cân ABCD (AB//CD;AB⊥CD).Vẽ E đối xứng A qua CD, F đối xứng A qua trung điểm M của CD. Chứng minh A,B,C,D,E,F cùng thuộc một đường tròn.
Bài 2 : Cho hình thoi ABCD , 2 đường chéo cắt nhau tại O. Trên AB,BC lấy các điểm E,F sao cho BE=BF. OE cắt CD tại G, OF cắt AB tại H. Chứng minh E,F,G,H cùng thuộc 1 đường tròn
Mọi người giúp em với ạ, mai e phải nộp rồi :(
cho tam giác nhọn ABC nội tiếp đường tròn (O;R) (AB>AC ) . gọi H là giao điểm của 2 đường cao BD và CE của tam giác ABC , F là giao điểm của AH và BC .a) CM tứ giác BEHF nội tiếp . b) CM FA*FH =FB *FC . vẽ đường kính AI của đường tròn (O) . gọi K là điểm đối xứng của H qua BC . CM tứ giác BIKC là hình thang cân
cho hai đường tròn o và o tiếp xúc ngoài tại a. kẻ tiếp tuyến chung ngoiaf mn với m thuộc (O) và n thuộc (O'). gọi p là điểm đối xứng với m qua oo', q là điểm đối xứng với n qua oo'.chứng minh
a)mnpq là hình thang cân
b) PQ là tếp tuyến chung của hai đường tròn (O) và (O')
MN + PQ = MP + NQ