Ta thấy \(a.a\) \(không\) \(bằng\) \(2\)
⇒ Không số nào có bình phương bằng 2
⇒ Không tồn tại số hửa tỉ x thoả mãn x2=2
⇒ (đpcm)
Ta thấy \(a.a\) \(không\) \(bằng\) \(2\)
⇒ Không số nào có bình phương bằng 2
⇒ Không tồn tại số hửa tỉ x thoả mãn x2=2
⇒ (đpcm)
Bài 8 : Chứng minh rằng không tồn tại số hữu tỷ x,y trái dấu và không đối nhau thỏa mãn đẳng thức :
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
Chứng minh rằng không tồn tại 2 số hữu tỉ x,y trái dấu k đối nhau thỏa mãn đẳng thức 1/x+y= 1/x+1/y
chứng minh rằng ko tồn tại 2 số hữu tỉ x và y trái dấu không đối nhau để thỏa mãn đẳng thức 1/x-y=1/x+1/y
Chứng minh rằng không tồn tại số hữu tỉ x thoả mãn: x2=6
Chứng minh rằng không tồn tại số hữu tỉ x,y thoả mãn: x2 + y2=3
Chứng minh rằng không tồn tại cặp số (x;y) nguyên nào thỏa mãn : 3x^2+7y^2=2002
Chứng minh rằng không tồn tại số nguyên x và y thỏa mãn
1/x^2 + 1/y^2 = 1/7
Chứng minh rằng không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đẳng thức : \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
Chứng minh rằng không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đẳng thức:
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)