cho các số nguyên dương a,b,c,d thỏa mãn 1/a2+1/b2+1/c2+1/d2=1.chứng minh rằng trong 4 số đã cho luôn tồn tại ít nhất hai số bằng nhau
Chứng minh rằng ko tồn tại các số nguyên a,b,c,d sao cho abcd=12345 và a2=b2+c2+d2
Câu 1:
a, Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1) +6 không chia hết cho 3. Chứng minh rằng 2n^2+n+8 không là số chính phương
b, cho 4 số dương a;b;c;d thỏa mãn điều kiện a^4/b + c^4/d = 1/(b+d) và a^2 + c^2 =1 . Chứng minh rằng (a^2014)/(b^1007) + ( c^ 2014)/(d^1007) = 2/( b+d)^1007
.Mọi người giải giúp Linh nha ^^ Linh đang cần gấp ạ!
Các bn giúp mk bài này nha
1, Chứng minh rằng với mọi số nguyên tố p>2 thì không tồn tại các số nguyên dương m,n thỏa mãn :\(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
2, Cho 3 số thực khác 0 đôi một khác nhau và thỏa mãn : \(a^2\left(b+c\right)=b^2\left(a+c\right)\)=2014
tính giá trị biểu thức H=\(c^2\left(a+b\right)\)
cho các số nguyên dương a, b , c, d thỏa mãn 1 phầ a bình + 1 phần b bình + 1 phần c bình + 1 phần dbinhf =1 . Chứng minh rằng trong 4 số đó luôn tồn tại 2 số bằng nhau
cho các số nguyên dương a,b,c,d thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
chứng minh rằng truong 4 số đã cho luôn tồn tại ít nhất hai số bằng nha
Cho đa thức f(x)= ax3+2bx2+3cx+4d với a,b,c,d nguyên.
Chứng minh rằng: không thể đồng thời tồn tại f(7)=73 và f(3)=58.
''Giúp mình với các bạn ơi!''
cho a,b,c,d là các số nguyên dương thỏa mãn a^2+c^2=b^2+d^2 Chứng minh rằng: a+b+c+d là hợp số
cho a, b, c, d là 4 số nguyên dương thỏa mãn: b=a+c/2 và 1/c=1/2.(1/b+1/d) Chứng minh rằng a/b=c/d