\(xy=\frac{13}{15}\)
\(yz=\frac{1}{3}\)
\(zx=\frac{3}{13}\)
\(\Rightarrow\left(xyz\right)^2=\frac{13}{15}.\frac{1}{3}.\frac{3}{13}=\frac{1}{15}=\frac{1^2}{\left(\sqrt{15}\right)^2}\)
Vì x ; y ; z là các số hữu tỉ nên ( xyz)2 là số hữu tỉ, ta chỉ cần chứng minh \(\sqrt{15}\) không phải số hữu tỉ mà là số vô tỉ.
Giả sử \(\sqrt{15}\) là số hữu tỉ thì coi \(\sqrt{15}=\frac{m}{n}\)( \(\frac{m}{n}\) phải là phân số tối giản)
\(\Rightarrow15=\frac{m^2}{n^2}\)
\(\Rightarrow15n^2=m^2\)
\(\Rightarrow m^2\)chia hết cho 15 = 3 x 5; 3 và 5 là các số nguyên tố nên \(m\) chia hết cho 15.
Đặt \(m=15k\left(k\in Z;k\ne0\right)\)
\(\Rightarrow m^2=\left(15k\right)^2=225k^2\)
\(\Rightarrow15n^2=m^2=225k^2\)
\(\Rightarrow n^2=\frac{225k^2}{15}=15k^2\)
\(\Rightarrow n^2\)chia hết cho 15
\(\Rightarrow n\)chia hết cho 15
Xét phân số \(\frac{m}{n}\)có m và n đều chia hết cho 15 nên không phải phân số tối giản, trái với đề bài. Do đó \(\sqrt{15}\) không phải số hữu tỉ.
Do đó không tồn tại 3 số hữu tỉ x ; y ; z thỏa mãn đề bài.