Sửa đề: Chứng minh rằng không có các số a, b, c nào thỏa mãn cả 3 bất đẳng thức
|b - c| > |a|(*); |c - a| > |b|(**); |a - b| > |c|(***)
Ta dễ thấy a, b, c phải khác nhau từng đôi 1
Ta thấy rằng vai trò của a, b, c trong bài này là như nhau nên ta chỉ cần giải 4 trường hợp là
\(\left(a>0,b>0,c>0\right);\left(a< 0,b< 0,c< 0\right);\left(a>0,b>0,c< 0\right);\left(a< 0,b< 0,c>0\right)\)
Không mất tính tổng quát ta giả sử: |a| > |b| > |c|
Với \(a>0,b>0,c>0\)thì |b - c| > |a| là sai (1)
Với \(a< 0,b< 0,c< 0\) thì |b - c| > |a| là sai (2)
Với \(a>0,b>0,c< 0\)thì ta đặt \(c=-z\left(z>0\right)\)
Thì bất đẳng thức (*), (**) ban đầu viết lại là:
\(\hept{\begin{cases}b+z>a\\a-b>z\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}z>a-b\\z< a-b\end{cases}}\)(sai) (3)
Với \(a< 0;b< 0;c>0\)thì ta đặt \(\hept{\begin{cases}a=-x\left(x>0\right)\\b=-y\left(y>0\right)\end{cases}}\)
Thì bất đẳng thức (*), (**) ban đầu viết lại là:
\(\hept{\begin{cases}y+c>x\\x-y>c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}c>x-y\\c< x-y\end{cases}}\)(sai) (4)
Từ (1), (2), (3), (4) ta suy ra điều phải chứng minh
mk góp thêm 1 cách nữa
Giả sử tồn tại 3 số a, b, c thỏa mãn cả 3 BĐT trên. Ta có:
\(\left|b-c\right|>\left|a\right|\)\(\Rightarrow\)\(\left(b-c\right)^2>a^2\)\(\Leftrightarrow\)\(b^2-2bc+c^2-a^2>0\)
\(\Leftrightarrow\)\(-\left(a+b-c\right)\left(a-b+c\right)>0\)(1)
Tương tự \(\left|c-a\right|>\left|b\right|\)\(\Leftrightarrow\)\(-\left(a+b-c\right)\left(-a+b+c\right)>0\) (2)
và \(\left|a-b\right|>\left|c\right|\)\(\Leftrightarrow\)\(-\left(a-b+c\right)\left(-a+b+c\right)>0\) (3)
Nhân (1), (2) và (3) theo vế ta được \(-\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2>0\) (vô lý)
Vậy ko tồn tại 3 số a, b, c thỏa mãn 3 BĐT đã cho.
sorry nha alibaba nguyễn mik sai đề cảm ơn bn đã sửa đề giùm
Vào trang cá nhân của mình đi, có cái này hay lắm, nhớ kb vs mình nha