n+1 và 3n+4 là 2 số nguyên tố cùng nhau khi ƯCLN(n+1;3n+4)=1
Gọi ƯCLN(n+1;3n+4)=d
=> [(n+1)+(3n+4)] chia hết cho d
=> 1 chia hết cho d => d=1
=> ƯCLN(n+1;3n+4)=1
Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau
n+1 và 3n+4 là 2 số nguyên tố cùng nhau khi ƯCLN(n+1;3n+4)=1
Gọi ƯCLN(n+1;3n+4)=d
=> [(n+1)+(3n+4)] chia hết cho d
=> 1 chia hết cho d => d=1
=> ƯCLN(n+1;3n+4)=1
Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau
Chứng minh rằng hai số: n+1 và 3n+4 là hai số nguyên tố cùng nhau với mọi giá trị của n.
Chứng minh rằng hai số: n+1 và 3n+4 là hai số nguyên tố cùng nhau với mọi giá trị của n.
Chứng tỏ rằng với mọi giá trị số tự nhiên n thì 3n+5 và 2n+3 là hai số nguyên tố cùng nhau
Chứng minh rằng với mọi giá trị của số tự nhiên n thì 2n + 3, 3n + 4 là hai số nguyên tố cùng nhau.
Ai giỏi giúp mình nha. Cảm ơn trước!
Chứng minh rằng với mọi số tự nhiên n thì 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
bài 1 ;Chứng tỏ rằng 3n+4 và n+1 là hai số nguyên tố cùng với mọi n thuộc N
Bài 2: tính giá trị tuyệt đối của a biết a lần lượt là -7,0,9,11
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
chứng minh rằng với mọi số tự nhiên n thì 3n + 1 và 6n + 3 hai
số nguyên tố cùng nhau