\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
\(\Leftrightarrow a^4+b^4+2a^2b^2-2ab^3-2a^3b\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge\left(a^2+b^2\right).2\sqrt{a^2.b^2}-2ab\left(a^2+b^2\right)=0\)( luôn đúng )
vì BĐT cuối luôn đúng nên BĐT đã cho đúng \(\Leftrightarrow a=b\)