CHO
S=\(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{199}+\frac{1}{200}\)
CHỨNG MINH RẰNG S>\(\frac{9}{10}\)
Chứng minh:
\(\frac{7}{12}<\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}<\frac{5}{6}\)
1)
\(Cho:\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{200}\)
Chứng minh: \(A>\frac{9}{10}\)
2)
Cho \(B=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Chứng minh \(B>\frac{7}{12}\)
1)
Cho \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{200}\)
Chứng minh: \(A>\frac{9}{10}\)
2)
Cho \(B=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Chứng minh: \(B>\frac{7}{12}\)
chứng minh
1) S=\(\frac{1}{21}\)+\(\frac{1}{22}\)+...........+\(\frac{1}{33}\)>\(\frac{1}{2}\)
2) \(\frac{7}{12}\)<\(\frac{1}{21}\)+\(\frac{1}{22}\)+...........+\(\frac{1}{40}\)<\(\frac{5}{6}\)
giúp mk nhé
Chứng minh rằng:\(\frac{1}{20!}+\frac{1}{21!}+\frac{1}{22!}+..........+\frac{1}{5000!}\)<\(\frac{1}{19!}\)
C/m ::
\(S=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}+\frac{1}{21}+\frac{1}{22}>\frac{1}{2}\)
cho A = \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{58}+\frac{1}{59}\)chứng minh A <\(\frac{3}{2}\)
Chứng minh rằng :
a) \(\frac{1}{2}\)< \(\frac{1}{51}\)+ \(\frac{1}{52}\)+ ........+ \(\frac{1}{100}\)<1
b) \(\frac{7}{12}\)< \(\frac{1}{21}\)+ \(\frac{1}{20}\)+ .........+ \(\frac{1}{40}\)<\(\frac{5}{6}\)