Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Momozono Nanami

chứng minh rằng \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)với \(n\inℕ^∗\)\

Áp dụng tính tổng 

\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)

Dương Lam Hàng
28 tháng 8 2018 lúc 16:18

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (pp trục căn thức ở mẫu)

                          \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng tính: \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)

                        \(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

                          \(=1-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)

Vậy S = 19/20


Các câu hỏi tương tự
Chu Hiền
Xem chi tiết
hang pham
Xem chi tiết
Châu Đặng Huỳnh Bảo
Xem chi tiết
Momozono Nanami
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Viet Thang
Xem chi tiết
Lê Hoàng Tiến Đạt
Xem chi tiết
Khoa Condernio
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết