\(\text{Ta có: }\)
\(VP=\frac{1}{a.\left(a+1\right)}=\frac{a+1-a}{a.\left(a+1\right)}=\frac{a+1}{a.\left(a+1\right)}-\frac{a}{a.\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}=VT\left(đpcm\right)\)
ta có \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a.\left(a+1\right)}-\frac{a}{a.\left(a+1\right)}\)
=\(\frac{a+1-a}{a.\left(a+1\right)}=\frac{1}{a.\left(a+1\right)}\)
=>\(\frac{1}{a.\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\left(dpcm\right)\)