Đây:
Ta có: \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
\(=\frac{a+1}{a\left(a+1\right)}\)
\(=\frac{1}{a}\)
Vậy \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)=\frac{1}{a}}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Đây:
Ta có: \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
\(=\frac{a+1}{a\left(a+1\right)}\)
\(=\frac{1}{a}\)
Vậy \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)=\frac{1}{a}}\)
Chứng minh rằng :
\(\frac{1}{a.\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
( a khác 0, a khác -1)
\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
- chứng minh . ( a thuộc Z , a khác 0 , a khác -1 )
Cho a, b, c là các số nguyên tố khác nhau đôi một.
Chứng minh rằng \(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\frac{1}{3}\)
Cho a, b, c là các số nguyên tố đôi một khác nhau. Chứng minh rằng:
\(\frac{1}{\left[a,b\right]}+\frac{1}{\left[a,c\right]}+\frac{1}{\left[b,c\right]}\le\frac{1}{3}\)
Với [a,b]=BCNN(a,b)
Chứng minh rằng với mọi số tự nhiên n khác 0 ta đều có:
a)\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{\left(3n-1\right).\left(3n+2\right)}=\frac{n}{6n+4}\)
Cho a,b,c là các số nguyên tố đôi một khác nhau
Chứng minh rằng:
\(\frac{1}{\left[a,b\right]}+\frac{1}{\left[a,c\right]}+\frac{1}{\left[b,c\right]}\le\frac{1}{3}\)
Với [a,b]=BCNN(a,b)
chứng tỏ
\(y=\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)với a thuộc Z; a khác 0; a khác -1
giải giúp
1. Chứng minh rằng với n là stn khác 0 thì \(4^{2n+1}+3^{n+2}\)chia hết cho 13.
2.Tính:
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{n+1}\right)\)
cho \(A=\frac{7}{3}.\frac{37}{3^2}....\frac{6^{2n}+1}{3^{2n}}\)và \(B=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^2}\right)...\left(1+\frac{1}{3^{2n}}\right)\)với n thuộc N
a) Chứng minh: 5A-2B là số tự nhiên
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A-2B chia hết cho 45