chứng minh rằng\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+.......+\frac{1}{100^2}< \frac{1}{4}\)
chứng minh rằng:\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+.......+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng :
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng:
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng: \(\frac{1}{6}<\frac{1}{^{5^2}}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}+...+\frac{1}{100^2}<\frac{1}{4}\)
Chứng minh rằng : \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
chứng minh rằng : \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
giúp mình với. mình đang cần gấp
Chứng minh rằng : \(\frac{1}{6}\)< \(\frac{1}{5^2}\)+\(\frac{1}{6^2}+\frac{1}{7^2}+.......\frac{1}{100^2}\) < \(\frac{1}{4}\)
Chứng minh : \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+......+\frac{1}{100^2}< \frac{1}{4}\)\(\frac{1}{4}\)