Chứng minh rằng: \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}< \frac{1}{2}\)
Chứng minh rằng :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}...+\frac{1}{100^2}<\frac{3}{4}\)
Chứng minh rằng :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+...+\frac{99}{100}\)
Chứng minh rằng:
a/\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
b/\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\frac{3}{4}\)
c/\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Chứng minh rằng:
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+.......+\frac{1}{100^2}<\frac{1}{2}\)
Chứng minh rằng:
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+......+\frac{1}{100^2}<\frac{1}{2}\)
chứng minh rằng:
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<1\)
chứng minh rằng:
a) \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+..+\frac{1}{100^2}< \frac{1}{2}\)
Cho \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Chứng minh rằng 1/6 < A < 1/4