CHỨNG MINH RẰNG CÁC TỔNG SAU KHÔNG PHẢI LÀ SỐ TỰ NHIÊN
B = 1/2 + 1/3 + 1/4 + ... + 1/8
1
a) Tìm tất cả các số tự nhiên n để 1+2+2^ +... + 2^2n-1 là số nguyên tố. b) Chứng minh rằng tồn tại 2023 số tự nhiên liên tiếp mà tất cả các số đều là hợp số. Nêu nhận định tổng quát và chứng minh nhận định đó. Câu 2.
a) Chứng tỏ rằng S=1+3+3^2 +...+3^2022 không là số chính phương.
b) Tìm số chính phương n mà tổng các chữ số của n bằng 2024.
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
1.Chứng minh rằng các số sau đây là nguyên tố cùng nhau:
a) 2n+1 và 2n+3
b) 2n+5 và 3n+7
2.Tìm số tự nhiên n sao cho 4n+3 chia hết cho 2n+1.
Chứng minh rằng các tổng sau không phải là số tự nhiên
a)A=1/2+1/3+1/4
b)B=1/2+1/3+1/4+....+1/8
c)C=1/2+1/3+1/4+....+1/16
Viết các tổng sau thành bình phương của 1 số tự nhiên
a, 1+3+5+7=
b, 1+3+5+7+9+11=
c, 1[mũ 3]+2 [mũ 3]+3[mũ 3]+4[mũ 3]=
d,1[mũ 3]+2 [mũ 3]+3[mũ 3]+4[mũ 3]+5[mũ 3]=
Chứng minh rằng các tổng sau không phải là số tự nhiên
a)A=1/2+1/3+1/4
b)B=1/2+1/3+1/4+...+1/8
c)C=1/2+1/3+...+1/16
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
chứng minh rằng tổng sau không phải là số tự nhiên 1/2+1/3+1/4+.....+1/n (n là số tự nhiên lớn hơn hoặc bằng 2).