Ta có : n(n+5) - (n-3)(n+2) = n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6(n+1) \(⋮\) 6 với mọi n
Vậy n(n+5) - (n-3)(n+2) chia hết cho 6 với mọi n là số nguyên
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2+3n+2n+6\)
\(=\left(n^2-n^2\right)-\left(5n-3n-2n\right)+6\)
\(=6⋮6\) (đpcm)
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-n^2-2n+3n-6\\ =6n-6=6\left(n-6\right)⋮6\)
=>đpcm
Vì :\(6=2.3\) và \(\left(2,3\right)=1\)
Ta có :\(n^3+3n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Nhận thấy:\(n\left(n+1\right)\left(n+2\right)\)là tích 3 số nguyên liên tiếp
=>Tồn tại: 1 số chia hết cho 2 (vì \(n\left(n+1\right)\)là tích 2 số nguyên liên tiếp)(với mọi số nguyên n)
...............:1 số chia hết cho 3 (vì \(n\left(n+1\right)\left(n+2\right)\)là tích 3 số nguyên liên tiếp)
=>\(n\left(n+1\right)\left(n+2\right)⋮2,3̸\)hay \(n^3+3n^2+2n⋮6\)
=>đpcm
n (n+5) - (n-3)(n+2)
= n2+5n - (n2 + 2n -3n - 6)
=n2+5n - (n2- n - 6)
=n2+ 5n - n2+ n + 6
=6n + 6 luôn chia hết cho 6
ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6=6n+6=6\left(n+1\right)⋮6\)
\(\Rightarrow\) \(6\left(n+1\right)\) chia hết cho \(6\) với mọi n là số nguyên
\(\Leftrightarrow n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\) với mọi n là số nguyên
vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\) với mọi n là số nguyên (đpcm)