Lời giải:
$B=(3+3^3+3^5+3^7)+(3^9+3^{11}+3^{13}+3^{15})+....+(3^{1985}+3^{1987}+3^{1989}+3^{1991})$
$=3(1+3^2+3^4+3^6)+3^9(1+3^2+3^4+3^6)+...+3^{1985}(1+3^2+3^4+3^6)$
$=(1+3^2+3^4+3^6)(3+3^9+...+3^{1985})$
$=820(3+3^9+...+3^{1985})$
$=41.20(3+3^9+...+3^{1985})\vdots 41$
Lời giải:
$B=(3+3^3+3^5+3^7)+(3^9+3^{11}+3^{13}+3^{15})+....+(3^{1985}+3^{1987}+3^{1989}+3^{1991})$
$=3(1+3^2+3^4+3^6)+3^9(1+3^2+3^4+3^6)+...+3^{1985}(1+3^2+3^4+3^6)$
$=(1+3^2+3^4+3^6)(3+3^9+...+3^{1985})$
$=820(3+3^9+...+3^{1985})$
$=41.20(3+3^9+...+3^{1985})\vdots 41$