\(\left(1+2+2^2+2^3+...+2^{99}\right)\) )
= \(\left(1+2\right)+2^2\left(1+2\right)+2^3\left(1+2\right)+2^{98}\left(1+2\right)\)
=\(3+2^2.3+2^3.3+...+2^{98}.3\)\(⋮3\)(đccm)
A= 1+2+22+...+299
A=( 1+2)+(22+23)+....+(298+299)
A=1(1+2)+ 22(1+2)+....+298(1+2)
A= 1.3 + 22..3+.......+299.3
A= 3 ( 1+22+....+299)
Vì 3:3 nên 3 3 ( 1+22+....+299) chia hết cho 3
Vậy...
Ta có :\(A=1+2+2^2+2^3+....+2^{98}+2^{99}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+....+\left(2^{98}+2^{99}\right)\)
\(=\left(1+2\right)+2^2.\left(1+2\right)+2^4.\left(1+2\right)+....+2^{98}.\left(1+2\right)\)
\(=3+2^2.3+2^4.3+...+2^{98}.3\)
\(=3.\left(1+2^2+2^4+...+2^{98}\right)\) chia hết cho 3
\(\implies\) \(A\) chia hết cho 3
:v Đăng sau thì lại được k :vv
Bạn đang bảo mình à :<???