A=3+3^2+3^3+3^4+...+3^9
=(3+3^2+3^3) + 3^3(3+3^2+3^3)+3^6(3+3^2+3^3)
=(3+3^2+3^3).(1+3^3+3^6)
=3(1+3+3^2)(1+3^3+3^6)
=3.13.(1+3^3+3^6) chia hết cho 13
\(A=\left(3+3^2+3^3\right)+...+\left(3^7+3^8+3^9\right)\)
\(=3\left(1+3+3^2\right)+.....+3^7\left(1+3+3^2\right)\)
\(=13\left(3+3^4+3^7\right)⋮13\left(đpcm\right)\)
Thấy A là tổng của 9 số hạng.
\(\implies A=(3+3^2+3^3)+(3^4+3^5+3^6)+(3^7+3^8+3^9) \) (có 3 nhóm)
\(\implies A=3(1+3+3^2)+3^4(1+3+3^2)+3^7(1+3+3^2)\)
\(\implies A=3.13+3^4.13+3^7.13\)
\(\implies A=13(3+3^4+3^7) \vdots13\)
\(\implies A\vdots13\)
Vậy \(A\vdots 13 (đpcm)\)
_Học tốt_