`a)35^6-35^5`
`=35^5(35-1)`
`=34.35^5 vdots 34`
`b)43^4+43^5`
`=43^4(43+45)`
`=88.43^4`
`=2.44.43^4 vdots 44`
a)356−355a)356-355
=355(35−1)=355(35-1)
=34.355⋮34=34.355⋮34
b)434+435b)434+435
=434(43+45)=434(43+45)
=88.434=88.434
=2.44.434⋮44
`a)35^6-35^5`
`=35^5(35-1)`
`=34.35^5 vdots 34`
`b)43^4+43^5`
`=43^4(43+45)`
`=88.43^4`
`=2.44.43^4 vdots 44`
a)356−355a)356-355
=355(35−1)=355(35-1)
=34.355⋮34=34.355⋮34
b)434+435b)434+435
=434(43+45)=434(43+45)
=88.434=88.434
=2.44.434⋮44
Chứng minh rằng :
a, 35^6 - 35^5 chia hết cho 34
b, 43^4 + 43^5 chia hết cho 44
CMR
a)\(35^6-36^5\)Chia hết cho 34
b)\(43^4+43^5\)Chia hết cho 44
c)Chứng tỏ rằng biểu thức (2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 với mọi gtrị của m và n
1/Chứng minh rằng:
a/85+211 chia hết cho 17
b/1919+6911 chia hết cho 44
Cho a,b là các số nguyên:
a,chứng minh rằng nếu a chia 13 dư 2 và b chia 13 dư 3 thì a^2 + b^2 chia hết cho 13.
b, chứng minh rằng nếu a chia 19 dư 3, b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
cho a+3 chia hết cho 5, b+4 chia hết cho 5.
Chứng minh rằng a^2+b^2 chia hết cho 5
chứng minh rằng 3^70+5^70 chia hết cho 34
Chứng minh rằng: 100a+b chia hết cho 7 thì a+4b cũng chia hết cho 7
Câu 34: Với n là số tự nhiên, chứng minh rằng:
a) \(11^{n+2}+12^{2n+1}\)chia hết cho 133
b) \(5^{n+2}+26.5^n+8^{2n+1}\)chia hết cho 59
c) \(7.5^{2n}+12.6^n\)chia hết cho 19
cho a,b nguyên dương và a+1;b+2007 chia hết cho 6.Chứng minh rằng:4a+a+b chia hết cho 6