Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khánh Linh Lý

Chứng minh rằng:

a, \(25x^2-10x+3>0\)

b, \(y^2-y+2>0\)

c,\(y^2-3y+5>0\)

d, \(16y^2-6y+9>0\)

Huy Thắng Nguyễn
20 tháng 7 2017 lúc 16:27

a) \(25x^2-10x+3=25x^2-10x+1+2\)

\(=\left(5x-1\right)^2+2\)

\(\left(5x-1\right)^2\ge0\forall x\)

Nên \(\left(5x-1\right)^2+2>0\forall x\)

Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.

b) \(y^2-y+2=y^2-y+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\)

\(\left(y-\dfrac{1}{2}\right)^2\ge0\forall x\)

Nên \(\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall x\)

Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.

c) \(y^2-3y+5=y^2-3y+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

\(\left(y-\dfrac{3}{2}\right)^2\ge0\forall x\)

Nên \(\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall x\)

Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.

d) \(16y^2-6y+9=16y^2-6y+\dfrac{9}{16}+\dfrac{135}{16}\)

\(=\left(4x-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\)

\(\left(4x-\dfrac{3}{4}\right)^2\ge0\forall x\)

Nên \(\left(4x-\dfrac{3}{4}\right)^2+\dfrac{135}{16}>0\forall x\)

Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.

Mới vô
20 tháng 7 2017 lúc 16:35

a,

\(25x^2-10x+3\\ =\left(5x\right)^2-10x+1+2\\ =\left(5x-1\right)^2+2\\ \left(5x-1\right)^2\ge0\forall x\\ \Rightarrow\left(5x-1\right)^2+2\ge2\forall x\\ \Rightarrow\left(5x-1\right)^2+2>0\forall x\)

b,

\(y^2-y+2\\ =y^2-y+\dfrac{1}{4}+\dfrac{7}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\\ \left(y-\dfrac{1}{2}\right)^2\ge0\forall y\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall y\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall y\)

c,

\(y^2-3y+5\\ =y^2-3y+\dfrac{9}{4}+\dfrac{11}{4}\\ =\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\\ \left(y-\dfrac{3}{2}\right)^2\ge0\forall y\\ \Rightarrow\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall y\\ \Rightarrow\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall y\)

d,

\(16y^2-6y+9\\ =\left(4y\right)^2-6y+\dfrac{9}{16}+\dfrac{135}{16}\\ =\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\\ \left(4y-\dfrac{3}{4}\right)^2\ge0\forall y\\ \Rightarrow\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\ge\dfrac{135}{16}\forall y\\ \Rightarrow\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}>0\forall y\)


Các câu hỏi tương tự
Trần Văn Tú
Xem chi tiết
phạm thị thịnh
Xem chi tiết
ytr
Xem chi tiết
Mơ Nhùn
Xem chi tiết
Suong Tran
Xem chi tiết
Kim Tae-hyung
Xem chi tiết
Nguyễn Minh Châu
Xem chi tiết
Nguyễn Minh Châu
Xem chi tiết
Trung Art
Xem chi tiết