Ta có: \(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}=\frac{1}{4}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
..........
\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow A< 1+\frac{3}{4}-\frac{1}{100}< 1+\frac{3}{4}\)
Đúng 0
Bình luận (0)