Bài 1 : Chứng minh rằng với mọi số nguyên n
a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
b)\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)chia hết cho 6
c)\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)chia hết cho 12
Bài 2:
Tìm x biết : \(\left(4x+3_{^{ }}\right)^3+\left(5-7x\right)^3+\left(3x-8\right)^3=0\)
Chứng minh rằng với mọi giá tyrij nguyên n , ta có
a)\(n^3+3n^2+2n\) chia hết cho 6
b)\(\left(n^2+n-1\right)^2-1\) chia hết cho 24
Bai 1 : Tính
a) \(\left(3x^n+1-2x^n\right)4x^2\)
b) 2\(\left(x^{2n}+2x^ny^n+y^{2n}\right)-y^n\left(4x^n+2y^n\right)\)
c)\(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^n-y^n\right)\left(x^{3n}+y^{3n}\right)\)
d)\(4^{n+1}-3.4^n\)
[Các bạn giúp mình nha ! Plz ]
chứng minh rằng
a) \(43^2+43\cdot17\) chia hết cho 60
b) \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi \(n\in z\)
c) \(25n\left(n-1\right)-50\left(n-1\right)\) luôn chia hết cho 150 với mọi n là số nguyên
\(n^3-\dfrac{3n^2-3n}{n^2+n+1}-1=n-4+\dfrac{3}{n^2+n+1}\)
Để : \(n^3-3n^2-3n-1⋮n^2+n+1\) thì \(3⋮n^2+n+1 \)
=> \(n^2+n+1\inư\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=-1\\n^2+n+1=3\\n^2+n+1=-3\end{matrix}\right.\)
Tìm n: Cái bài này em làm được nhiêu đó nhưng không biết tìm n thế nào . Mong các anh chị giúp em ạ
Bùi Thị Vân . EM xin lỗi khi tag cô vào đây nhưng thực sự em đang rất cần ạ, thông cảm cho em :(
Bài 1 : Cm: ( n+1)^3 = n^3 +1 +3n(n+1). Áp dụng tính : S = 1.2+2.3+3.4+4.5+...+97.98+99.100
58.
a) Thực hiện phép tính: \(\dfrac{1}{x}-\dfrac{1}{x+1}\)
b) Áp dụng tính:
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\)
\(B=\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}\)
Chứng minh \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\) chia hết cho 6 với mọi số nguyên \(n\)
tìm số nguyên n để
\(\left(n^2+3n+3\right)⋮\left(2n-1\right)\)