\(=\left(4n-3\right)^2-\left(3n-4\right)^2\)
\(=\left[\left(4n-3\right)+\left(3n-4\right)\right]\left[\left(4n-3\right)\right]-\left(3n-4\right)\)
\(=\left(7n-7\right)\left(n+1\right)=7\left(n-1\right)\left(n+1\right)\)
Vậy \(\left(4n-3\right)^2-\left(3n-4\right)^2\) Chia hết cho 7 với mọi n thuộc Z
\(\left(4n-3\right)^2-\left(3n-4\right)^2=\left[\left(4n-3\right)+\left(3n-4\right)\right]\left[\left(4n-3\right)-\left(3n-4\right)\right]=\left(7n-7\right)\left(n+1\right)=7\left(n-1\right)\left(n+1\right)\)