Bài 1: tìm số nguyên tố p sao cho
a, p+6; p+12; p+24; p+38 là các số nguyên tố
b, p+4; p+8 là các số nguyên tố
Bài2: cho p và p+4 là các số nguyên tố (p>3)
Chứng minh rằng: 11p+1 là hợp số
Bài 3 : tổng của hai số nguyên tố có thể bằng 2003 không? Vì sao?
Bài 4: Cho A=2+2^2+...+2^2017
Chứng minh rằng: A+3 là hợp số
cho p là một số nguyên tố lớn hơn 3
a) chứng minh rằng p có dạng 6k + 1 hoăc 6k + 5
b) 8p + 1 củng la một số nguyên tố chứng minh rằng 4p + 1 là hợp số
Với mọi số tự nhiên n, chứng minh rằng các cặp số sau nguyên tố cùng nhau:
a) 2n + 3, n + 2
b) n + 1, 3n +4
c) 2n + 3, 3n + 4
Chứng minh rằng:
a) 3n+7 và 5n+12 là 2 số nguyên tố cùng nhau
b) 2n+1 và 2n+3 là 2 số nguyên tố cùng nhau
Chứng minh rằng số tự nhiên n là các số nguyên tố cùng nhau:
a) 2n+1 và 3n+2
b)2n+2 và 5n+3 c) 3n+1 và 4n+1
Chứng minh : Nếu b là số nguyên tố lớn lơn 3 thì A = 3n +2 +1993b2 là hợp số
Câu 1: Cho p và 10p + 1 là các số nguyên tố lớn hơn 3. Chứng minh rằng: 17p + 1 là hợp số.
Câu 2: Chứng minh rằng 3n+7/ 9n+6 là phân số tối giản với mọi STN n.
Trình bày cách giải chi tiết giúp mik nhé. Mink cảm ơn. :)))
Cho 2 số tự nhiên a=\(2^{2017}+3^{2017}\)và b=\(2^{2018}+3^{2018}\). Chứng minh rằng a và b là hai số nguyên tố cùng nhau
Cho 2 số tự nhiên a=\(2^{2017}+3^{2017}\)và b=\(2^{2018}+3^{2018}\). Chứng minh rằng a và b là hai số nguyên tố cùng nhau