(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
a, Chứng minh rằng với mọi m thuộc Z ta luôn có m3 - m chia hết cho 6 .
b, Chứng minh rằng với mọi n thuộc Z ta luôn có ( 2n - 1 ) - 2n + 1 chia hết cho 8
chứng minh rằng với mọi n thuộc N thì A=2n + 11...1(n ch/s 1) chia hết cho 3
chứng minh rằng n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
?
Bài 5: Chứng minh rằng: Tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. (a^3 đọc
là a lập phương)
Bài 6: Chứng minh rằng:
a) n(n + 1) (2n + 1) chia hết cho 6
b) n^5 - 5n^3 + 4n chia hết cho 120 Với mọi số n thuộc N
Bài 7: Chứng minh rằng: n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 Với mọi số n Z
Bài 8: Chứng minh rằng: Với mọi số tự nhiên n lẻ thì :
a) n^2 + 4n + 3 chia hết cho 8
b) n^3 + 3n^2 - n - 3 chia hết cho 48
c) n^12 - n^8 - n^4 + 1chia hết cho 512
Bài 9: Chứng minh rằng:
a) Với mọi số nguyên tố p>3 thì p^2 – 1 chia hết cho 24
b) Với mọi số nguyên tố p, q >3 thì p^2 – q^2 chia hết cho 24
Bài 10: Chứng minh rằng:
n^3 + 11n chia hết cho 6 với mọi số n thuộc Z.
HD: Tách 11n = 12n – n
chứng minh rằng A=n(n+1)(2n+1) chia hết cho 6 với mọi n thuộc N
chứng minh rằng với mọi số tự nhiên n thuộc N thi 92n-1 chia hết cho 2 , chia hết cho 5
1/ Chứng minh rằng với mọi n thuộc N:
a. 7^(4n)-1 chia hết cho 5
b. 3^(4n+1)+2 chia hết cho 5
c. 9^(2n+1)+1 chia hết cho 10
1. Tìm xy thuộc N sao cho 12xy chia hết cho 71.
2. Chứng minh rằng 11...1 ( n số 1) - n chia hết cho 3 với n thuộc N*.
3. Chứng minh rằng 2n+11...1 ( n số 1) chia hết cho 3.
Các bạn giúp mình với. Mình bị bí rồi!