Do 2009 đồng dư với 1 (mod 2008)
=> 20092009 đồng dư với 12009 hay đồng dư với 1 (mod 2008)
=> 20092009-1 đồng dư với 0 (mod 2008)
Vậy 20092009-1\(⋮\)2008
Do 2009 đồng dư với 1 (mod 2008)
=> 20092009 đồng dư với 12009 hay đồng dư với 1 (mod 2008)
=> 20092009-1 đồng dư với 0 (mod 2008)
Vậy 20092009-1\(⋮\)2008
47. a) Chứng minh rằng : 14^14 – 1 chia hết cho 3 b) Chứng minh rằng : 2009^2009 – 1 chia hết cho 2008.
Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
CHỨNG MINH rằng 2009 mũ 2009 chia hết cho 2008
Chứng minh rằng\(2009^{2009}-1\)chia hết cho 2008
BÀI 1:Chứng Minh Rằng
a) 412 - 1 chia hết cho 3
b) 20092009 - 1 chia hết cho 2008
Chứng minh rằng số tự nhiên A chia hết cho 2009, với:
A=1.2.3...2007.2008(1+1/2+....+1/2007+1/2008)
20092009 _1 chứng minh số này chia hết cho 2008
giúp mình nha tui đang cần gấp lắm
Cho \(A=1.2..........2008.\left(1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2008}\right)\)
Chứng minh rằng A chia hết cho 2009.
chứng minh rằng:
\(\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\)