Chứng minh rằng:
\(\left(1+\frac{7}{9}\right).\left(1+\frac{7}{20}\right).\left(1+\frac{7}{33}\right)....\left(1+\frac{7}{2900}\right)=7\frac{1}{29}\)
(1+7/9)*(1+7/20)*(1+7/33)*...*(1 + 7/2900) = ?
Tính nhanh :
A = ( 1 + 7/9 ).(1+7/20).(1+7/33 )....( 1 + 7/2900 )
Tính P=(1+7/9).(1+7/20).(1+7/33)...(1+7/2900)
Tính và so sánh:
a. A= ( 1+7/9)(1+7/20)(1+7/33).............(1+7/2900) với 7
1-tính tích
p=(1+7/9)(1+7/20)(1+7/33)...(1+7/2900)
CMR : \(\left(1+\frac{7}{7}\right)+\left(1+\frac{7}{20}\right)+\left(1+\frac{7}{33}\right)+...+\left(1+\frac{7}{2900}\right)=7\frac{1}{29}\)
tính
a=(1+(7/9))x(1+(7/20))x(1+(7/33))x...........x(1+(1/2900))
\(A=\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)..........\left(1+\frac{7}{2900}\right)\)