\(\text{Ta có: }14^{8^{2004}}+2\equiv5^{2004}+2\left(\text{mod 11}\right)\)
\(\equiv\left(5^{15}\right)^{133}.5^9+2\left(\text{mod 11}\right)\)
\(\equiv1^{133}.5^9+2\left(\text{mod 11}\right)\)
\(\equiv9+2\left(\text{mod 11}\right)\)
\(\equiv0\left(\text{mod 11}\right)\)
Vậy .... chia hết cho 11