Bài 1: Chứng minh rằng
a) P = (a+5)(a+8) chia hết cho 2
b) Q = ab(a+b) chia hết cho 2
Bài 2: cho a thuộc N. chứng minh a2-8 không chia hết cho 5
Bài 3: Chứng minh rằng n5-n chia hết cho 10
chứng minh rằng số A(n) = 2^3n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2chứng minh rằng số A(n) = 2^3^n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2)
Cho số nguyên dương n > 1, k mà k chia hết cho n − 1. Chứng minh rằng nknk −1 chia hết cho (n−1)2
Cho \(n\) là một số không chia hết cho \(3\). Chứng minh rằng \(A=5^{2n}+5^n+1\) chia hết cho \(31\).
Chứng minh rằng tồn tại vô số số tự nhiên để 4n^2+1 chia hết cho 5 và chia hết cho 13.
1)Chứng minh rằng
N= 3-10x^3 - 6xy- 57hr+ 96rq chia hết cho x^2yhrq
2) Chứng minh rằng
P = 369^3 - 219^3 chia hết cho 1350
Câu 1: Chứng minh rằng m3n-mn3chia hết cho 6 (m,n ∈ Z)
Câu 2: Cho a và b là 2 số lẻ và không chia hết cho 3. Chứng minh rằng a2-b2 chia hết cho 24
Câu 3: Chứng minh rằng \(2^{3^{4n+1}}+3\) chia hết cho 11 (n ∈ N)
a) chứng minh rằng tich của 2 số tự nhiên liên tiếp chia hết cho 2
b) chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 3
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5