chứng minh rằng :
\(H=0,5.\left(2007^{2005}-2003^{2003}\right)\)là số nguyên
Chứng minh rằng :
0,5.(20072005 - 20032003) là một số nguyên.
giai giùm mình nhé các ban !
Chứng minh rằng:
\(0,5\left(2007^{2005}-2003^{2003}\right)\) là số nguyên.
Bài 6: (0,5 điểm)
Cho đa thức P(x) = ax2 + bx + c trong đó các hệ số a, b, c là các số nguyên. Biết rằng giá trị của đa thức chia hết cho 5 với mọi giá trị nguyên của x. Chứng minh rằng a, b, c đều chia hết cho 5.
Chứng minh 0,5. [(2007^2005)-(2003^2003)] là số nguyên.
Câu 5. (0,5 điểm)
Cho f(x) = ax3 + bx2 + cx + d trong đó a, b, c, d ∈ Z và thỏa mãn b =3a + c Chứng minh rằng f (1).f(-2) là bình phương của một số nguyên
Bài 1: Chứng minh rằng: \(A=0,5.\left(2007^{2015}-2003^{2003}\right)\) là số nguyên.
Bài 2: Chứng minh rằng: \(B=\left(\frac{9}{11}-0,81\right)^{2004}\)viết dưới dạng thập phân thì sau dấu phẩy có ít nhất 4000 chữ số 0.
1. Với x, y là những số nguyên. Chứng minh rằng (p+1)(q+1) chia hết cho 4.
2. Với x, y là những số nguyên. Chứng minh rằng (x^2+x)(x+2) - 15y chia hết cho 3.