\(\text{Giải: }\)
\(\text{Gọi ƯCLN ( 3n + 2 ; 5n + 3 ) = d }\)\(\left(d\in N\text{* }\right)\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}15n+10\\15n+9\end{cases}\Rightarrow\left(15n+10\right)-\left(15n+9\right)}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\text{3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau}\)
\(\Rightarrow\frac{3n+2}{5n+3}\text{là phân số tối giản }\)
\(\text{Vậy ..................................}\)
có j thắc mắc thì ib cho mk nhé
Đặt ƯCLN \(3n+2;5n+3=d\)( d \(\inℕ^∗\))
Ta có : \(3n+2⋮d\Rightarrow15n+10⋮d\)(1)
\(5n+3⋮d\Rightarrow15n+9⋮d\)(2)
Lấy (1) - (2) ta được : \(15n+10-15n-9⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm