P = a+a^2+a^3+...+a^2n
P = (a+a^2) + (a^3+a^4)+...+(a2n-1+a2n)
P = a(1+a)+ a^3(1+a)+....+a^2n-1(1+a)
P = (a+1)(a+a^3+...+a^2n-1) chia hết cho a+1 (đpcm)
P = a+a^2+a^3+...+a^2n
P = (a+a^2) + (a^3+a^4)+...+(a2n-1+a2n)
P = a(1+a)+ a^3(1+a)+....+a^2n-1(1+a)
P = (a+1)(a+a^3+...+a^2n-1) chia hết cho a+1 (đpcm)
chứng minh rằng
P=a+a^2+a^3+...+a^2n chia hết cho a+1 với a,n thuộc N
Cho a=1+2+3+...+n và b=2n+1(với n thuộc N,n>=2). Chứng minh: a và b là hai số nguyên tố cùng nhau
Cho a=1+2+3+...+n và b=2n+1(với n thuộc N,n>1).chứng minh rằng a và b là 2 số nguyên tố cùng nhau
Cho A= 2.4+4.6+6.8+...+2n.(2n+2) với n thuộc N sao Chứng Minh rằng A=4n.(n+1).(n+2)chia cho 3
cho \(A=\frac{5}{3}.\frac{13}{3^2}....\frac{3^{2n}+2^{2n}}{3^{2n}}\)với n thuộc N. Chứng minh A<3
Cho A= 1+2+3+...+n và B=2n+1 ( Với n thuộc N, n>=2)
Chứng minh A và b là hai số nguyên tố cùng nhau.
Cho A= 1+2+3+4+...+n và B = 2n +1 (Với n thuộc N, n > 2 )
Chứng minh rằng A và B là 2 số nguyên tố cùng nhau.
Cho A= 1+2+3+4+...+n và B = 2n +1 (Với n thuộc N, n > 2 )
chứng minh rằng A và B là 2 số nguyên tố cùng nhau.
Với a,n thuộc N* thì chứng minh:
A) n/a(a+n)=1/a-1/a+n
B) 2n/a(a+n)(a+2n)=1/a(a+n)-1/(a+n)(a+2n)
C) Áp dụng, tính:
C=2014/1.3.5+2014/3.5.7+...+2014/49.51.53