Đặt n=a^2+b^2
Khi đó n^2=(a^2+b^2)^2−4a^2b^2+4a^2b^2=(a^2−2ab+b^2)(a^2+2ab+b^2)+(2ab)^2=[(a+b)(a−b)]^2+(2ab)^2
Đặt n=a^2+b^2
Khi đó n^2=(a^2+b^2)^2−4a^2b^2+4a^2b^2=(a^2−2ab+b^2)(a^2+2ab+b^2)+(2ab)^2=[(a+b)(a−b)]^2+(2ab)^2
Chứng minh rằng
a)Nếu số n là tổng của hai số chính phương thì 2n cũng là tổng của hai số chính phương
b)Nếu số 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương
c)Nếu số n là tổng của hai số chính phương thì n2 cũng là tổng của hai số chính phương
d)Nếu mỗi số m và n đều là tổng của hai số chính phương thì tích mn cũng là tổng của hai số chính phương
Chứng minh rằng:
a) Nếu số 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương
b) Nếu số n là tổng của hai số chính phương thì n\(^2\) cũng là tổng của hai số chính phương
c) Nếu mỗi số m và n đều là tổng của hai số chính phương thì tích mn cũng là tổng của hai số chính phương
chứng minh rằng nếu n là tổng của 2 số chính phương thì 2n cũng là tổng của 2 số chính phương
Chứng minh: Nếu n là tổng của hai số chính phương thì 2n và n2 cũng là tổng của hai số chính phương
1) Chứng minh rằng :
a) Nếu n là tổng hai số chính phương thì 2n cũng là tổng hai số chính phương
b) Nếu 2n là tổng của hai số chính phương thì n cũng là tổng hai số chính phương
c/m rằng;
a) n là tổng hai số chính phương thì 2n cũng là tổng hai số chính phương
b) 2n là tổng hai số chính phương thì n cũng là tổng hai số chính phương
c) nếu n là tổng hai số chính phương thì n^2 cũng là tổng hai số chính phương
d) nếu mỗi số m;n là tổng hai số chính phương thì tích m;n cũng là tổng hai số chính phương
1) a) Nếu 2n là tổng 2 số chính phương thì n cũng là tổng của hai số chính phương
b) Nếu mỗi n và m đều là tổng hai số chính phương thì tích mn cũng là tổng 2 số chính phương
Chứng minh rằng: Nếu a,b đều là tổng của 2 số chính phương thì a.b cũng là tổng của 2 số chính phương.
Cho \(n\) là tổng hai số chính phương. Chứng minh rằng \(n^2\) cũng là tổng của hai số chính phương.