Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.
Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath
Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.
Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath
Chứng minh rằng nếu ( a^2 + b^2 + c^2 ).( x^2 + y^2 + z^2 ) = ( ax + by + cz ) ^2 với x,y,z khác 0
thì a / x = b / y = c / z
Chứng minh rằng nếu (a2 + b2 +c2) = (ax + by + cz) với x, y, z khác 0 thì a/x = b/y= c/z
Chứng minh rằng nếu ( a^2 + b^2 + c^2 ).( x^2 + y^2 + z^2 ) = ( ax + by + cz ) ^2 với x,y,z khác 0
Giup minh voi
Chứng minh rằng: nếu \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\) với x,y,z khác 0 thì \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Cho x,y,z là 3 số nguyên khác nhau. Chứng minh nếu a=x^2-yz; b=y^2-xz; c=z^2-xy thì tổng ax+by+cz chia hết cho (a+b+c)
Chứng mình rằng nếu \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)\)
Với x, y, z khác 0 thì \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Cho x,y,z là các số nguyên khác 0. Chứng minh rằng nếu \(x^2-yz=a,y^2-zx=b,z^2-xy=c\)thì tổng ax+by+cz chia hết cho tổng a+b+c
3. Chứng minh rằng nếu: x/a = y/b = z/c thì (x^2 + y^2 + z^2) (a^2 + b^2 + c^2) = (ax + by + cz)^2
Cho x,y,z #0 và (ax + by + cz) / x^2+y^2+z^2 = a^2+b^2+c^2
Chứng minh rằng a/x = b/y =c/z