\(\left(\sqrt{a}-\sqrt{b}\right)\ge0\)
=> \(a+b-2\sqrt{ab}\ge0\)
=> Điều phải chứng minh
\(\left(\sqrt{a}-\sqrt{b}\right)\ge0\)
=> \(a+b-2\sqrt{ab}\ge0\)
=> Điều phải chứng minh
cho a,b, c > hoac = 0 va a+b+c=1.chung minh
\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}>3.5\)
2 cho a,b,c >0 . chung minh
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>hoac=3\)
chung minh rang :
Neu a,b trai dau thi \(\frac{b-a}{b\sqrt{\frac{-a}{b}}}=\frac{a-b}{a\sqrt{\frac{-b}{a}}}\)
Chứng minh rằng ,nếu a,b>0 thi ta có:
\(\frac{a+2\sqrt{ab}+9b}{\sqrt{a}+3\sqrt{b}+2\sqrt[4]{ab}}-2\sqrt{b}=\left(\sqrt[4]{a}+\sqrt[4]{b}\right)^2\)
Bai 1: cho \(n\inℕ^∗\). CMR : \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< =\frac{1}{\sqrt{3n+1}}\). <= nghia la be hon hoac bang nha cac ban
Bai 2 : Cho a>0;b>0. CMR : \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}< =\sqrt{\sqrt{ab}}\)
Bai 3: Cho x, y, z > 0 và x + y + z = 1. Chứng minh rằng:\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}>=1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(P=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{2\sqrt{a}-\sqrt{b}}{\sqrt{ab}-a}\right):\left(\frac{1}{b\sqrt{a}}-\frac{1}{a\sqrt{b}}\right)\)
1)chung minh \(P=\sqrt{ab}\)
2) tinh gia tri cua P khi \(a=3-\sqrt{5}\) va b=0,5
3) ting gia tri lon nhat cua P neu \(a^2+4b^2=8\)
gia su a,b la 2 so huu ti duong va khong phai la binh phuong cua mot so huu ti
chung minh rang :neu x,y la hai so huu ti sao cho \(m=x\sqrt{a}+y\sqrt{b}\)la so huu ti thi m=0
Chứng minh:
a)\(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
b)\(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\forall a,b>0\)
c) Với a>b>0 và m>n (m,n \(\in\)N) chứng minh:
\(\frac{a^m-b^m}{a^m+b^m}>\frac{a^n-b^n}{a^n+b^n}\)
Bài 1: Cho a,b>0. Chứng minh \(\sqrt[3]{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}< \sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\)
Bài 2: Cho a,b>0. Chứng minh \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\ge\frac{2\sqrt{2}}{\sqrt{a+b}}\)
Bài 3: Cho a,b,c>0. Chứng minh \(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
Chứng minh rằng:
\(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\)(với a>0 ; b>0)