Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kha Nguyễn

Chứng minh: n^5 - n chia hết cho 10, n thuộc Z

Giải giúp mk vs

zZz Cool Kid_new zZz
12 tháng 7 2019 lúc 10:26

Ta có:

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Do \(n\left(n-1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

Vì n là số nguyên nên n có các dạng \(5k;5k+1;5k+2;5k+3;5k+4\)

Với \(n=5k\Rightarrow n^5-n=5k\left(25k^2-1\right)\left(25k^2+1\right)⋮5\)

Với \(n=5k+1\) thì \(n-1=5k+1-1=5k\Rightarrow n^5-n⋮5\)

Với \(n=5k+2\) thì \(n^2+1=\left(5k+2\right)^2+1=25k^2+20k+5⋮5\Rightarrow n^5-n⋮5\)

Với \(n=5k+3\) thì \(n^2+1=\left(5k+3\right)^2+1=25k^2+30k+10⋮5\Rightarrow n^5-n⋮5\)

Với \(n=5k+4\) thì \(n+1=5k+5⋮5\Rightarrow n^5-n⋮5\)

Mà \(\left(2;5\right)=1\Rightarrowđpcm\)

Đào Thu Hòa 2
12 tháng 7 2019 lúc 21:00

Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right).\)

(n-1), n  là 2 số nguyên liên tiếp nên \(n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)hay \(n^5-n⋮2\)(1)

Mặt khác \(n^5-n=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Nhận thấy \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)(tích của 5 số nguyên liên tiếp); \(5n\left(n-1\right)\left(n+1\right)⋮5\)

Suy ra: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)hay \(n^5-n⋮5\)(2)

Từ (1) và (2) kết hợp với \(\left(2;5\right)=1\)Suy ra \(n^5-n⋮10\)

Cách này thực chất cũng gần giống bài của Cool Kid, nhưng lập luận để chia hết cho 5 thì hơi khác

P/S : Đây là ACC phụ nên đừng ti ck cho câu trả lời này :))


Các câu hỏi tương tự
Trịnh Thị Nga
Xem chi tiết
Kiều Minh Quân
Xem chi tiết
Nguyễn Thị Phương Uyên
Xem chi tiết
Nguyễn Thị Phương Uyên
Xem chi tiết
Nam Cung Hạo Thiên
Xem chi tiết
Đỗ Quỳnh Chi
Xem chi tiết
Trần Hoàng Trung Đức
Xem chi tiết
chudung133
Xem chi tiết
Trần My Nguyễn Khánh
Xem chi tiết