ta có 2n+2 và 2n+3 là hai số tự nhiên liên tiếp và lớn hơn 1
thế nên hai số này nguyên tố cùng nhau
ta có 2n+2 và 2n+3 là hai số tự nhiên liên tiếp và lớn hơn 1
thế nên hai số này nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Chứng minh rằng số n+3 và 2n+5 với n thuộc \(N\)là 2 số nguyên tố cùng nhau ?
a) chứng minh rằng khi nla số tự nhiên khác 0 thì n+1 là 2 số nguyên tố cùng nhau.
b)chứng minh rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau :2n+3 va 4n+8
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N+ 1 LÀ 2 SỐ GUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N-1 ) ( N + 1 ) ( N + 3 ) ( N + 5 ) CHIA HẾT CHO 384
C, VỚI A ,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 ,P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
CHỨNG MINH RẰNG VỚI n THUỘC N THÌ 2 SỐ 2n+1 VÀ 3n+1 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
Chứng minh rằng: 2 số 2n+3 và 3n+5 (n thuộc N) là 2 số nguyên tố cùng nhau
Chứng minh rằng : với n thuộc N THÌ các số sau là hai số nguyên tố cùng nhau
a) n+1 va 2n+3
b) 2n+3 va 4n+8
c) 7n+10 va 5n +7
d) 14n+3 và 21n +4
chứng minh rằng với mọi n thuộc N thì 2n+1 và 4n+3 là hai số nguyên tố cùng nhau
Chưng minh rằng : Các số sau đây là các số nguyên tố cùng nhau :
a , Số lẻ liên tiếp ( 2n + 1 , 2n + 3 )
b , 2n + 5 và 3n + 7 ( n thuộc N )