Cho n=2k thì (2k+3)(2k+6)=(2k+3).2(k+3) Suy ra :luôn luôn chia hết cho 2
Cho n=2k+1 thì (2k+1+3)(2k+1+6)=2(k+2)(2k+7) Suy ra: luôn luôn chia hết cho 2
Vậy (n+3)(n+6) chia hết cho 2
Cho n=2k thì (2k+3)(2k+6)=(2k+3).2(k+3) Suy ra :luôn luôn chia hết cho 2
Cho n=2k+1 thì (2k+1+3)(2k+1+6)=2(k+2)(2k+7) Suy ra: luôn luôn chia hết cho 2
Vậy (n+3)(n+6) chia hết cho 2
chứng minh rằng với m,n thuộc z
câu số 1:n mũ 3 +11*n chia hết cho 6
câu số 2: m*n * (m mũ 2-n mũ 2) chia hết cho 6
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
?
Bài 5: Chứng minh rằng: Tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. (a^3 đọc
là a lập phương)
Bài 6: Chứng minh rằng:
a) n(n + 1) (2n + 1) chia hết cho 6
b) n^5 - 5n^3 + 4n chia hết cho 120 Với mọi số n thuộc N
Bài 7: Chứng minh rằng: n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 Với mọi số n Z
Bài 8: Chứng minh rằng: Với mọi số tự nhiên n lẻ thì :
a) n^2 + 4n + 3 chia hết cho 8
b) n^3 + 3n^2 - n - 3 chia hết cho 48
c) n^12 - n^8 - n^4 + 1chia hết cho 512
Bài 9: Chứng minh rằng:
a) Với mọi số nguyên tố p>3 thì p^2 – 1 chia hết cho 24
b) Với mọi số nguyên tố p, q >3 thì p^2 – q^2 chia hết cho 24
Bài 10: Chứng minh rằng:
n^3 + 11n chia hết cho 6 với mọi số n thuộc Z.
HD: Tách 11n = 12n – n
.CHỨNG MINH :
1) n.(2n+7).(7n+7) chia hết cho 6 (n thuộc N)
2) n3-13n chia hết cho 6 (n thuộc Z)
3)m.n.(m2-n2) chia hết cho 3 (m,n thuộc Z)
Với n thuộc N, chứng minh rằng:
a. (n+10).(n+15) chia hết cho 2
b. n.(n+1).(2n+1) chia hết cho 6
c. n.(n+8).(n+13) chia hết cho 3
chứng minh n( n+1)(n+2) chia hết cho 6 với n thuộc N
a) Chứng minh rằng \(2^{1995}-1\)chia hết cho 31
b) Chứng minh rằng, với n thuộc N* ta có \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)chia hết cho 6
Chứng minh rằng (n3 - n) chia hết cho 6 với n thuộc N
chứng minh rằng, với n thuộc N* ta có (3n+3+3n+2+2n+3+2n+2) chia hết cho 6