Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Clash Of Clans

Chứng minh mọi số tự nhiên n lớn hơn 6 đều biểu diễn được dưới dạng tổng hai số nguyên tố cùng nhau lớn hơn 1.

Đinh Tuấn Việt
6 tháng 6 2015 lúc 22:28

n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:

+)  Với n = 6k + 1 (k  N*) 

=> n = 3k + (3k + 1)

3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau 

+) Với n = 6k + 3 (k  N*) 

Viết n = (3k +1) + (3k +2) 

mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau

+) Tương tự với n = 6k + 5 (k  N*) 

Viết n = (3k+2) + (3k +3)

mà 3k + 2 và 3k + 3 nguyên tố cùng nhau

+) Với n = 6k + 2 (k  N*) 

Viết n = (6k -1) + 3

Gọi d = ƯCLN (6k - 1; 3)

=> 6k - 1 chia hết cho d;

    3 chia hết cho d => 3. 2k = 6k chia hết cho d

=> 6k - (6k -1) = 1 chia hết cho d => d = 1

do đó, 6k - 1 và 3 nguyên tố cùng nhau

+) Với n = 6k + 4 (k  N*) 

Viết n = (6k +1 ) + 3

Dễ có: 6k +1 và 3 nguyên tố cùng nhau

=> ĐPCM 

Như Đạt 123
6 tháng 6 2015 lúc 22:31

n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:

+)  Với n = 6k + 1 (k $\in$∈ N*) 

=> n = 3k + (3k + 1)

3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau 

+) Với n = 6k + 3 (k $\in$∈ N*) 

Viết n = (3k +1) + (3k +2) 

mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau

+) Tương tự với n = 6k + 5 (k $\in$∈ N*) 

Viết n = (3k+2) + (3k +3)

mà 3k + 2 và 3k + 3 nguyên tố cùng nhau

+) Với n = 6k + 2 (k $\in$∈ N*) 

Viết n = (6k -1) + 3

Gọi d = ƯCLN (6k - 1; 3)

=> 6k - 1 chia hết cho d;

    3 chia hết cho d => 3. 2k = 6k chia hết cho d

=> 6k - (6k -1) = 1 chia hết cho d => d = 1

do đó, 6k - 1 và 3 nguyên tố cùng nhau

+) Với n = 6k + 4 (k $\in$∈ N*) 

Viết n = (6k +1 ) + 3

Dễ có: 6k +1 và 3 nguyên tố cùng nhau

=> ĐPCM 

iam deadpool
11 tháng 3 2017 lúc 20:18

nhu dat sao cau lai sao chep bai cua dinh tuan viet

Bùi Huy Anh
21 tháng 2 2018 lúc 15:26

n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:
+)  Với n = 6k + 1 (k ∈ N*) 
=> n = 3k + (3k + 1)
3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau 
+) Với n = 6k + 3 (k ∈ N*) 
Viết n = (3k +1) + (3k +2) 
mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau
+) Tương tự với n = 6k + 5 (k ∈ N*) 
Viết n = (3k+2) + (3k +3)
mà 3k + 2 và 3k + 3 nguyên tố cùng nhau
+) Với n = 6k + 2 (k ∈ N*) 
Viết n = (6k -1) + 3
Gọi d = ƯCLN (6k - 1; 3)
=> 6k - 1 chia hết cho d;
    3 chia hết cho d => 3. 2k = 6k chia hết cho d
=> 6k - (6k -1) = 1 chia hết cho d => d = 1
do đó, 6k - 1 và 3 nguyên tố cùng nhau


Các câu hỏi tương tự
VŨ THỊ HUYỀN TRANG
Xem chi tiết
Lê Quang Hưng
Xem chi tiết
Bạn Thân Yêu
Xem chi tiết
Hà Thúy Nga
Xem chi tiết
Đinh Tuấn Việt
Xem chi tiết
Quốc Việt Bùi Đoàn
Xem chi tiết
trieutieudao
Xem chi tiết
phan vu minh toan
Xem chi tiết
Trần Quỳnh Mai
Xem chi tiết