Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hà Lan Anh

chứng minh mọi, a,b, c,  ta có :

    \(^{a^2+b^2+c^2}\)>=   \(ab+bc+ac\)

Uzumaki Naruto
10 tháng 9 2016 lúc 20:20

ta áp dụng cô-si la ra 
a2+b2+c2 ≥ ab+ac+bc 
̣̣(a - b)2 ≥ 0 => a2 + b2 ≥ 2ab (1) 
(b - c)2 ≥ 0 => b2 + c2 ≥ 2bc (2) 
(a - c)2 ≥ 0 => a2 + c2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a2 + b2 + c2) ≥ 2(ab+ac+bc) 
=> a2 + b2 + c2 ≥ ab+ac+bc 
dấu = khi : a = b = c

Nguyễn Thị Thùy Dương
10 tháng 9 2016 lúc 20:21

Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0..\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0..\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\ge\left(ab+bc+ca\right)\)