Áp dụng bất đẳng thức côsi lần lượt ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
Nhân vế theo vế ta được : \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\cdot3\sqrt[3]{\frac{xyz}{xyz}}=9\)(đpcm)
Áp dụng bđt cosi ta có :
(x+y+z).(1/x+1/y+1/z)
>= \(3\sqrt[3]{xyz}\). \(3\sqrt[3]{\frac{1}{xyz}}\)= \(9\sqrt[3]{\frac{xyz.1}{xyz}}\) = 9
=> ĐPCM
Dấu "=" xảy ra <=> x=y=z
Tk mk nha