\(A=75\left(4^{1975}+4^{1974}+4^{1973}+...+4^2+4+1\right)+25\) chia hết cho 4^1976
\(\text{Giải phương trình sau(biến đổi đặc biệt):}\)
\(E=\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-21}{1978}+\frac{x-19}{1980}=\frac{x-1970}{29}+\frac{x-1972}{27}+\frac{x-1974}{25}+\frac{x-1976}{23}+\frac{x-1978}{21}+\frac{x-1980}{19}\)
cho các số ko âm a b c thỏa mãn điều kiện sau a^2016+b^2016 ,1 vàx^2016=y^2016<1 chứng minh rằng a^1976 x^40+b^1976 y^40
cho các số ko âm a b c thỏa mãn điều kiện sau a^2016+b^2016 =<1 vàx^2016+y^2016=<1 chứng minh rằng a^1976 x^40+b^1976 y^40
cho các số a b x y không âm thỏa mãn điều kiện sau a^2016+b^2016 =<1 và x^2016_y^2016=<1
chứng minh rằng a^1976 x^40+b^1976 y^40=<1
Cho biểu thức \(Q=x^3+y^3-3\left(x+y\right)+1976\)
Tính giá trị biểu thức với \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\); \(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)
Chứng minh
a) :\(7^{9^{9^{9^9}}}-7^{9^9}⋮100\)
b) \(7^{1976^{1970}}-3^{68^{70}}⋮10\).
Chứng minh rằng với mọi số thực dương thỏa mãn xyz=1
Chứng minh rằng \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{3}{4}\)
Chứng minh \(\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(b-c\right)\left(b-d\right)\left(c-d\right)⋮12\)